jphase
Interface ContPhaseVar

All Superinterfaces:
JMarkovElement, PhaseVar
All Known Implementing Classes:
AbstractContPhaseVar, DenseContPhaseVar, ErlangCoxianVar, HyperErlangVar, SparseContPhaseVar

public interface ContPhaseVar
extends PhaseVar

Author:
German Riano. Universidad de los Andes. (C) 2006, Juan Fernando Perez This interface defines the behaviour that any Continuous Phase-Type distribution should have

Method Summary
 ContPhaseVar copy()
          Creates a deep copy of the original Phase-Type Variable
 ContPhaseVar eqResidualTime()
          Computes the Equilibrium Residual Distribution
 ContPhaseVar max(ContPhaseVar B)
          Returns the maximum between the variable B and the original: res = max(A,B)
 ContPhaseVar max(ContPhaseVar B, ContPhaseVar res)
          Returns the maximum between the variable B and the original: res = max(A,B)
 ContPhaseVar min(ContPhaseVar B)
          Returns the minimum between the variable B and the original: res = min(A,B)
 ContPhaseVar min(ContPhaseVar B, ContPhaseVar res)
          Returns the minimum between the variable B and the original: res = min(A,B)
 ContPhaseVar mix(double p, ContPhaseVar B)
          Computes the distribution of the mix: res = A*p + B*(1-p)
 ContPhaseVar mix(double p, ContPhaseVar B, ContPhaseVar res)
          Computes the distribution of the mix: res = A*p + B*(1-p)
 ContPhaseVar newVar(int n)
          Creates a new variable of the same class of the original Continuous Phase-Type Variable
 double pdf(double x)
          Evaluates the probability density function at x
 double[] pdf(int n, double delta)
          Evaluates the Probability Density Function at n values of x, starting with x=0, step delta
 ContPhaseVar residualTime(double x)
          Computes the Residual Time Distribution
 ContPhaseVar residualVar(double a)
          Computes the variable (X-a)+, i.e.
 ContPhaseVar sum(ContPhaseVar B)
          Computes the sum of variables: res = A +B
 ContPhaseVar sum(ContPhaseVar B, ContPhaseVar res)
          Computes the sum of variables: res = A +B
 ContPhaseVar sumGeom(double p)
          Returns the sum of a geometric number of independent copies of this variable
 ContPhaseVar sumPH(DiscPhaseVar B)
          Returns the sum of a Phase number of Continuous Phase-type distributions
 ContPhaseVar sumPH(DiscPhaseVar B, ContPhaseVar res)
          Returns the sum of a Phase number of Continuous Phase-type distributions
 ContPhaseVar times(double c)
          Returns a Phase continuous variable that is the original one times c
 java.lang.String toString()
          This method returns a short String used in the user interface to describe this element.
 ContPhaseVar waitingQ(double rho)
          Computes the distribution of the waiting time in queue
 
Methods inherited from interface jphase.PhaseVar
cdf, cdf, CV, expectedValue, getMat0, getMat0Array, getMatrix, getMatrixArray, getNumPhases, getVec0, getVector, getVectorArray, lossFunction1, lossFunction2, median, moment, prob, quantil, setMatrix, setVector, stdDeviation, survival, survival, variance
 
Methods inherited from interface jmarkov.basic.JMarkovElement
description, equals, label
 

Method Detail

sumPH

ContPhaseVar sumPH(DiscPhaseVar B,
                   ContPhaseVar res)
Returns the sum of a Phase number of Continuous Phase-type distributions

Parameters:
B - Discrete-Phase Type Distribution that determines the number of Continuous Phase-Type Distributions to sum
res - Continuous Phase Variable to store the resulting distribution
Returns:
Sum of a Phase number of Continuous Phase-type distributions

sumPH

ContPhaseVar sumPH(DiscPhaseVar B)
Returns the sum of a Phase number of Continuous Phase-type distributions

Parameters:
B - Discrete-Phase Type Distribution that determines the number of Continuous Phase-Type Distributions to sum
Returns:
Sum of a Phase number of Continuous Phase-type distributions

pdf

double pdf(double x)
Evaluates the probability density function at x

Parameters:
x - Evaluation point
Returns:
Probability density function at x

pdf

double[] pdf(int n,
             double delta)
Evaluates the Probability Density Function at n values of x, starting with x=0, step delta

Parameters:
n - number of evaluation points
delta - distance between evaluation points
Returns:
Evaluation of the probability density function at x = 0,d,2d,..,(n-1)d

sum

ContPhaseVar sum(ContPhaseVar B,
                 ContPhaseVar res)
Computes the sum of variables: res = A +B

Parameters:
B - Variable to sum to the original
res - Variable to store the result
Returns:
Sum of Variables: res = A +B

sum

ContPhaseVar sum(ContPhaseVar B)
Computes the sum of variables: res = A +B

Parameters:
B - Variable to sum to the original
Returns:
Sum of Variables: res = A +B

sumGeom

ContPhaseVar sumGeom(double p)
Returns the sum of a geometric number of independent copies of this variable

Parameters:
p - Parameter of the geometric variable
Returns:
Sum of a geometric number of independent copies of this variable

mix

ContPhaseVar mix(double p,
                 ContPhaseVar B,
                 ContPhaseVar res)
Computes the distribution of the mix: res = A*p + B*(1-p)

Parameters:
B - Variable to mix with the original
p - Portion of this variable in the mix (0<=p<=1)
res - Variable to store the resulting distribution with the same number of phases of the original distribution
Returns:
Distribution of the mix: res = A*p + B*(1-p)

mix

ContPhaseVar mix(double p,
                 ContPhaseVar B)
Computes the distribution of the mix: res = A*p + B*(1-p)

Parameters:
B - Variable to mix with the original
p - Portion of this variable in the mix (0<=p<=1)
Returns:
Distribution of the mix: res = A*p + B*(1-p)

min

ContPhaseVar min(ContPhaseVar B,
                 ContPhaseVar res)
Returns the minimum between the variable B and the original: res = min(A,B)

Parameters:
B - Variable to compare with the original
res - Variable to store the resulting distribution
Returns:
res = min(A,B)

min

ContPhaseVar min(ContPhaseVar B)
Returns the minimum between the variable B and the original: res = min(A,B)

Parameters:
B - Variable to compare with the original
Returns:
res = min(A,B)

max

ContPhaseVar max(ContPhaseVar B,
                 ContPhaseVar res)
Returns the maximum between the variable B and the original: res = max(A,B)

Parameters:
B - Variable to compare with the original
res - Variable to store the resulting distribution
Returns:
res = max(A,B)

max

ContPhaseVar max(ContPhaseVar B)
Returns the maximum between the variable B and the original: res = max(A,B)

Parameters:
B - Variable to compare with the original
Returns:
res = max(A,B)

times

ContPhaseVar times(double c)
Returns a Phase continuous variable that is the original one times c

Parameters:
c - Scale factor to be applied to the original Phase continuous distribution
Returns:
Phase continuous variable that is the original one times c

residualTime

ContPhaseVar residualTime(double x)
Computes the Residual Time Distribution

Parameters:
x - evaluation point
Returns:
Distribution of P(X - tau <= x | X > tau

eqResidualTime

ContPhaseVar eqResidualTime()
Computes the Equilibrium Residual Distribution

Returns:
Fo(x) = integ(0,t,(1 - F(t))) / E(X)

waitingQ

ContPhaseVar waitingQ(double rho)
Computes the distribution of the waiting time in queue

Parameters:
rho - Server utilization
Returns:
Phase Variable that describes the waiting time in Queue

residualVar

ContPhaseVar residualVar(double a)
Computes the variable (X-a)+, i.e. the distribution takes the value of the original distribution if it is greater or equal to a. Otherwise, it is equal to null.

Parameters:
a - Parameter for determining loss variable
Returns:
Phase Variable that describes (X-a)+

copy

ContPhaseVar copy()
Creates a deep copy of the original Phase-Type Variable

Specified by:
copy in interface PhaseVar
Returns:
A deep copy of the original Phase-Type Variable

newVar

ContPhaseVar newVar(int n)
Creates a new variable of the same class of the original Continuous Phase-Type Variable

Parameters:
n - number of Phases of the new Variable
Returns:
A new variable of the same class of the original Continuous Phase-Type Variable

toString

java.lang.String toString()
Description copied from interface: JMarkovElement
This method returns a short String used in the user interface to describe this element. It is highly recommended that every class calls label(), using the following code:
 public final String toString() {
     return label();
 }
 

Specified by:
toString in interface JMarkovElement
Overrides:
toString in class java.lang.Object
Returns:
A String label.
See Also:
JMarkovElement.label()