|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectjphase.SuperErlang
public class SuperErlang
Field Summary | |
---|---|
static SuperErlang |
ONE
The number one (1) |
Constructor Summary | |
---|---|
SuperErlang()
f(x) = 0.0 |
|
SuperErlang(double cf,
int n,
double lbd)
f(x) = cf E(n,lbd) |
|
SuperErlang(Term trm)
f(x) = t |
Method Summary | |
---|---|
SuperErlang |
addTerm(double coeff,
int power,
double lmb)
|
SuperErlang |
addTerm(Term tr)
|
java.lang.Object |
clone()
Clones this function |
static SuperErlang |
convolution(SuperErlang f1,
SuperErlang f2)
Return the convolution of this two functions |
double |
defIntegrate()
Returns the integral from 0 to infinity of this function. |
double |
defIntegrate(double x)
Returns the definite integral from 0 to x of this function |
SuperErlang |
derive()
Rturns the derivative at t of this function. |
protected double |
exp()
|
SuperErlang |
expand(double a)
Evaluates f(t) at a*t. |
SuperErlang |
integrate()
Rturns the integral from 0 to t of this function. |
SuperErlang |
integrateCom()
Rturns the integral from t to infinity of this function. |
boolean |
isZero()
Detrmines whethr this function is identically equal to 0 |
protected double |
moment(int k)
|
SuperErlang |
move(double a)
Evaluates the function at t+a |
SuperErlang |
multiply(SuperErlang f2)
Multiply the function f2 with this function |
static SuperErlang |
multiply(SuperErlang f1,
SuperErlang f2)
Return the product of this two functions |
int |
numTerms()
Returns the number of terms. |
static SuperErlang |
poly(double coef,
int n)
Return a monomy c t^n |
SuperErlang |
sum(SuperErlang f2)
Sums the function f2 to this function |
static SuperErlang |
sum(SuperErlang f1,
SuperErlang f2)
Return the sum of this two functions |
Term |
term(int i)
Returns the i-th term. |
SuperErlang |
times(double cons)
Returns this function times the constant |
java.lang.String |
toString()
|
java.lang.String |
toStringE()
String representation using the notation p1E(n1,a2) + p2E(n2,a2) + ... where E(n,a) = a^n
x^(n-1) e^(-a x) / (n-1)!, is an Erlang pdf. |
java.lang.String |
toStringP()
String representation using the notation p1P(n1,a2) + p2P(n2,a2) + ... where E(n,a) = (a
x)^n e^(-a x) / n!, is a poisson cdf.. |
java.lang.String |
toStringRTF()
String representation in RTF |
Methods inherited from class java.lang.Object |
---|
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Field Detail |
---|
public static SuperErlang ONE
Constructor Detail |
---|
public SuperErlang()
public SuperErlang(Term trm)
trm
- public SuperErlang(double cf, int n, double lbd)
cf
- n
- lbd
- Method Detail |
---|
public static SuperErlang poly(double coef, int n)
coef
- n
-
public boolean isZero()
public SuperErlang addTerm(double coeff, int power, double lmb)
coeff
- power
- lmb
-
public SuperErlang addTerm(Term tr)
tr
-
public int numTerms()
public Term term(int i)
i
- The 0based index.
protected double exp()
protected double moment(int k)
k
-
public java.lang.Object clone()
clone
in class java.lang.Object
public SuperErlang sum(SuperErlang f2)
f2
-
public static SuperErlang sum(SuperErlang f1, SuperErlang f2)
f1
- f2
-
public SuperErlang times(double cons)
cons
-
public SuperErlang expand(double a)
a
-
public SuperErlang move(double a)
a
-
public SuperErlang multiply(SuperErlang f2)
f2
-
public static SuperErlang multiply(SuperErlang f1, SuperErlang f2)
f1
- f2
-
public SuperErlang derive()
public SuperErlang integrate()
public SuperErlang integrateCom()
public double defIntegrate()
public double defIntegrate(double x)
x
-
public static SuperErlang convolution(SuperErlang f1, SuperErlang f2)
f1
- f2
-
public java.lang.String toString()
toString
in class java.lang.Object
public java.lang.String toStringRTF()
public java.lang.String toStringE()
p1E(n1,a2) + p2E(n2,a2) + ...
where E(n,a) = a^n
x^(n-1) e^(-a x) / (n-1)!, is an Erlang pdf.
public java.lang.String toStringP()
p1P(n1,a2) + p2P(n2,a2) + ...
where E(n,a) = (a
x)^n e^(-a x) / n!, is a poisson cdf..
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |